Discovery of Pure Organic Substances Exhibiting the Quantum Spin Liquid State
2014.05.01
(2014.06.16 Update)
Takayuki Isono (formerly Project Researcher, Institute for Solid State Physics, University of Tokyo/currently NIMS Postdoctoral Researcher, National Institute for Materials Science)
Akira Ueda (Research Associate, Institute for Solid State Physics, University of Tokyo)
Shinya Uji (Unit Director, Superconducting Properties Unit, National Institute for Materials Science)
Hatsumi Mori (Professor, Institute for Solid State Physics, University of Tokyo)
Researchers discovered pure organic substances exhibiting the quantum spin liquid state
Abstract
Water loses kinetic energy as it is cooled, and when water molecules become unable to move, water becomes solid (ice). Similarly, electron spins in magnetic materials (S = 1/2: magnetic moments inherent in electrons) normally align and form a solid state at low temperature.
Recent theoretical studies suggest that spins on a triangular lattice maintain their liquid state (quantum spin liquid state) even at an extremely low temperature. However, a substantial understanding of this phenomenon, such as whether the quantum spin liquid state really exists, and if it does exist, what kind of spin state it is, has not yet been obtained. To clarify these matters, efforts have been made over many years in the quest for quantum spin liquid substances.
The group of researchers at the Institute for Solid State Physics, the University of Tokyo, led by Professor Hatsumi Mori, Project Researcher Takayuki Isono (currently NIMS Postdoctoral Researcher), and Research Associate Akira Ueda, were engaged in searching for hydrogen-bonded single-component pure organic semiconductors, and in this process, jointly with another research group led by Unit Director Shinya Uji at the Superconducting Properties Unit of the National Institute for Materials Science, they discovered that electron spins in a pure organic substance, κ-H3(Cat- EDT-TTF)2, were in the quantum spin liquid state.
*Cat- EDT-TTF: catechol-fused ethylenedithiotetrathiafulvalene
A detailed understanding of quantum spin liquid is expected to present a new direction in the course of research into the superconducting mechanism of high-temperature superconductors and the development of new data storage and communication technology.